WEPD - Type I [56, 28, 10]

This is a database of known weight enumerator parameters for singly-even binary self-dual [56, 28, 10] codes.
The possible weight enumerators of a singly-even binary self-dual [56, 28, 10] code are given in [5] as

$$
\begin{aligned}
& W_{56,1}^{\mathrm{I}}=1+(308+4 \alpha) x^{10}+(4246-8 \alpha) x^{12}+\cdots \\
& W_{56,2}^{\mathrm{I}}=1+(308+4 \alpha) x^{10}+(3990-8 \alpha) x^{12}+\cdots
\end{aligned}
$$

where $\alpha \in \mathbb{Z}$.
See the links below for lists of known values of α for $W_{56,1}^{\mathrm{I}}$ and $W_{56,2}^{\mathrm{I}}$.

- $W_{56,1}^{\mathrm{I}}$ known parameters (from [1-6])
- $W_{56,2}^{\mathrm{I}}$ known parameters (from [2-6])

References

[1] J. Gildea, A. Kaya, A. Tylyshchak, and B. Yildiz. A group induced four-circulant construction for self-dual codes and new extremal binary self-dual codes, 2019. arXiv:1912.11758.
[2] J. Gildea, A. Kaya, A. Tylyshchak, and B. Yildiz. A modified bordered construction for self-dual codes from group rings. J. Algebra Comb. Discrete Struct. Appl., 7(2):103-119, 2020. doi: 10.13069/jacodesmath. 729402.
[3] J. Gildea, A. Korban, and A. M. Roberts. New binary self-dual codes of lengths 56, 58, 64, 80 and 92 from a modification of the four circulant construction. Finite Fields Appl., 75, 2021. doi: 10.1016/j.ffa.2021.101876.
[4] J. Gildea, A. Korban, A. M. Roberts, and A. Tylyshchak. Extremal binary self-dual codes from a bordered four circulant construction. Discrete Math., 346(8), 2023. doi: 10.1016/j.disc.2023.113425.
[5] M. Harada and K. Saito. Singly even self-dual codes constructed from Hadamard matrices of order 28. Australas. J. Combin., 70(2):288-296, 2018.
[6] A. M. Roberts. Constructions of extremal and optimal self-dual and Hermitian self-dual codes over finite fields using circulant matrices. Master's thesis, University of Chester, Chester, UK, 2020. https://drive. google.com/file/d/1CMjnuBvQtrXOY8foy6_gfXOcFFuHAaFs/view.

